\(\int \cos ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x))^2 (A+C \sec ^2(c+d x)) \, dx\) [1093]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (warning: unable to verify)
   Maple [A] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 35, antiderivative size = 158 \[ \int \cos ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x))^2 \left (A+C \sec ^2(c+d x)\right ) \, dx=\frac {16 a^2 A E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {4 a^2 (A+3 C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}+\frac {2 a^2 (7 A-15 C) \sqrt {\cos (c+d x)} \sin (c+d x)}{15 d}+\frac {2 C (a+a \cos (c+d x))^2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}+\frac {2 (A-5 C) \sqrt {\cos (c+d x)} \left (a^2+a^2 \cos (c+d x)\right ) \sin (c+d x)}{5 d} \]

[Out]

16/5*a^2*A*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/d+4/3*a^2*(A+
3*C)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/d+2*C*(a+a*cos(d*x+
c))^2*sin(d*x+c)/d/cos(d*x+c)^(1/2)+2/15*a^2*(7*A-15*C)*sin(d*x+c)*cos(d*x+c)^(1/2)/d+2/5*(A-5*C)*(a^2+a^2*cos
(d*x+c))*sin(d*x+c)*cos(d*x+c)^(1/2)/d

Rubi [A] (verified)

Time = 0.53 (sec) , antiderivative size = 158, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.229, Rules used = {4199, 3123, 3055, 3047, 3102, 2827, 2720, 2719} \[ \int \cos ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x))^2 \left (A+C \sec ^2(c+d x)\right ) \, dx=\frac {4 a^2 (A+3 C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}+\frac {2 a^2 (7 A-15 C) \sin (c+d x) \sqrt {\cos (c+d x)}}{15 d}+\frac {2 (A-5 C) \sin (c+d x) \sqrt {\cos (c+d x)} \left (a^2 \cos (c+d x)+a^2\right )}{5 d}+\frac {16 a^2 A E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 C \sin (c+d x) (a \cos (c+d x)+a)^2}{d \sqrt {\cos (c+d x)}} \]

[In]

Int[Cos[c + d*x]^(5/2)*(a + a*Sec[c + d*x])^2*(A + C*Sec[c + d*x]^2),x]

[Out]

(16*a^2*A*EllipticE[(c + d*x)/2, 2])/(5*d) + (4*a^2*(A + 3*C)*EllipticF[(c + d*x)/2, 2])/(3*d) + (2*a^2*(7*A -
 15*C)*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(15*d) + (2*C*(a + a*Cos[c + d*x])^2*Sin[c + d*x])/(d*Sqrt[Cos[c + d*x
]]) + (2*(A - 5*C)*Sqrt[Cos[c + d*x]]*(a^2 + a^2*Cos[c + d*x])*Sin[c + d*x])/(5*d)

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 2827

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 3047

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(
e_.) + (f_.)*(x_)]), x_Symbol] :> Int[(a + b*Sin[e + f*x])^m*(A*c + (B*c + A*d)*Sin[e + f*x] + B*d*Sin[e + f*x
]^2), x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]

Rule 3055

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*B*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*((c + d*Sin[e + f*x
])^(n + 1)/(d*f*(m + n + 1))), x] + Dist[1/(d*(m + n + 1)), Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*
x])^n*Simp[a*A*d*(m + n + 1) + B*(a*c*(m - 1) + b*d*(n + 1)) + (A*b*d*(m + n + 1) - B*(b*c*m - a*d*(2*m + n)))
*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] &
& NeQ[c^2 - d^2, 0] && GtQ[m, 1/2] &&  !LtQ[n, -1] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c, 0])

Rule 3102

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (
f_.)*(x_)]^2), x_Symbol] :> Simp[(-C)*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 2))), x] + Dist[1/(
b*(m + 2)), Int[(a + b*Sin[e + f*x])^m*Simp[A*b*(m + 2) + b*C*(m + 1) + (b*B*(m + 2) - a*C)*Sin[e + f*x], x],
x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] &&  !LtQ[m, -1]

Rule 3123

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (C_.)*s
in[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(c^2*C + A*d^2))*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Si
n[e + f*x])^(n + 1)/(d*f*(n + 1)*(c^2 - d^2))), x] + Dist[1/(b*d*(n + 1)*(c^2 - d^2)), Int[(a + b*Sin[e + f*x]
)^m*(c + d*Sin[e + f*x])^(n + 1)*Simp[A*d*(a*d*m + b*c*(n + 1)) + c*C*(a*c*m + b*d*(n + 1)) - b*(A*d^2*(m + n
+ 2) + C*(c^2*(m + 1) + d^2*(n + 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, C, m}, x] && NeQ
[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&  !LtQ[m, -2^(-1)] && (LtQ[n, -1] || EqQ[m + n + 2,
 0])

Rule 4199

Int[(cos[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (C_.)*sec[(e_.)
 + (f_.)*(x_)]^2), x_Symbol] :> Dist[d^(m + 2), Int[(b + a*Cos[e + f*x])^m*(d*Cos[e + f*x])^(n - m - 2)*(C + A
*Cos[e + f*x]^2), x], x] /; FreeQ[{a, b, d, e, f, A, C, n}, x] &&  !IntegerQ[n] && IntegerQ[m]

Rubi steps \begin{align*} \text {integral}& = \int \frac {(a+a \cos (c+d x))^2 \left (C+A \cos ^2(c+d x)\right )}{\cos ^{\frac {3}{2}}(c+d x)} \, dx \\ & = \frac {2 C (a+a \cos (c+d x))^2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}+\frac {2 \int \frac {(a+a \cos (c+d x))^2 \left (2 a C+\frac {1}{2} a (A-5 C) \cos (c+d x)\right )}{\sqrt {\cos (c+d x)}} \, dx}{a} \\ & = \frac {2 C (a+a \cos (c+d x))^2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}+\frac {2 (A-5 C) \sqrt {\cos (c+d x)} \left (a^2+a^2 \cos (c+d x)\right ) \sin (c+d x)}{5 d}+\frac {4 \int \frac {(a+a \cos (c+d x)) \left (\frac {1}{4} a^2 (A+15 C)+\frac {1}{4} a^2 (7 A-15 C) \cos (c+d x)\right )}{\sqrt {\cos (c+d x)}} \, dx}{5 a} \\ & = \frac {2 C (a+a \cos (c+d x))^2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}+\frac {2 (A-5 C) \sqrt {\cos (c+d x)} \left (a^2+a^2 \cos (c+d x)\right ) \sin (c+d x)}{5 d}+\frac {4 \int \frac {\frac {1}{4} a^3 (A+15 C)+\left (\frac {1}{4} a^3 (7 A-15 C)+\frac {1}{4} a^3 (A+15 C)\right ) \cos (c+d x)+\frac {1}{4} a^3 (7 A-15 C) \cos ^2(c+d x)}{\sqrt {\cos (c+d x)}} \, dx}{5 a} \\ & = \frac {2 a^2 (7 A-15 C) \sqrt {\cos (c+d x)} \sin (c+d x)}{15 d}+\frac {2 C (a+a \cos (c+d x))^2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}+\frac {2 (A-5 C) \sqrt {\cos (c+d x)} \left (a^2+a^2 \cos (c+d x)\right ) \sin (c+d x)}{5 d}+\frac {8 \int \frac {\frac {5}{4} a^3 (A+3 C)+3 a^3 A \cos (c+d x)}{\sqrt {\cos (c+d x)}} \, dx}{15 a} \\ & = \frac {2 a^2 (7 A-15 C) \sqrt {\cos (c+d x)} \sin (c+d x)}{15 d}+\frac {2 C (a+a \cos (c+d x))^2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}+\frac {2 (A-5 C) \sqrt {\cos (c+d x)} \left (a^2+a^2 \cos (c+d x)\right ) \sin (c+d x)}{5 d}+\frac {1}{5} \left (8 a^2 A\right ) \int \sqrt {\cos (c+d x)} \, dx+\frac {1}{3} \left (2 a^2 (A+3 C)\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx \\ & = \frac {16 a^2 A E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {4 a^2 (A+3 C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}+\frac {2 a^2 (7 A-15 C) \sqrt {\cos (c+d x)} \sin (c+d x)}{15 d}+\frac {2 C (a+a \cos (c+d x))^2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}+\frac {2 (A-5 C) \sqrt {\cos (c+d x)} \left (a^2+a^2 \cos (c+d x)\right ) \sin (c+d x)}{5 d} \\ \end{align*}

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 9.75 (sec) , antiderivative size = 799, normalized size of antiderivative = 5.06 \[ \int \cos ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x))^2 \left (A+C \sec ^2(c+d x)\right ) \, dx=\frac {\cos ^{\frac {9}{2}}(c+d x) \sec ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) (a+a \sec (c+d x))^2 \left (A+C \sec ^2(c+d x)\right ) \left (-\frac {(8 A-5 C+8 A \cos (2 c)+5 C \cos (2 c)) \csc (c) \sec (c)}{10 d}+\frac {2 A \cos (d x) \sin (c)}{3 d}+\frac {A \cos (2 d x) \sin (2 c)}{10 d}+\frac {2 A \cos (c) \sin (d x)}{3 d}+\frac {C \sec (c) \sec (c+d x) \sin (d x)}{d}+\frac {A \cos (2 c) \sin (2 d x)}{10 d}\right )}{A+2 C+A \cos (2 c+2 d x)}-\frac {2 A \cos ^4(c+d x) \csc (c) \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};\sin ^2(d x-\arctan (\cot (c)))\right ) \sec ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) (a+a \sec (c+d x))^2 \left (A+C \sec ^2(c+d x)\right ) \sec (d x-\arctan (\cot (c))) \sqrt {1-\sin (d x-\arctan (\cot (c)))} \sqrt {-\sqrt {1+\cot ^2(c)} \sin (c) \sin (d x-\arctan (\cot (c)))} \sqrt {1+\sin (d x-\arctan (\cot (c)))}}{3 d (A+2 C+A \cos (2 c+2 d x)) \sqrt {1+\cot ^2(c)}}-\frac {2 C \cos ^4(c+d x) \csc (c) \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};\sin ^2(d x-\arctan (\cot (c)))\right ) \sec ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) (a+a \sec (c+d x))^2 \left (A+C \sec ^2(c+d x)\right ) \sec (d x-\arctan (\cot (c))) \sqrt {1-\sin (d x-\arctan (\cot (c)))} \sqrt {-\sqrt {1+\cot ^2(c)} \sin (c) \sin (d x-\arctan (\cot (c)))} \sqrt {1+\sin (d x-\arctan (\cot (c)))}}{d (A+2 C+A \cos (2 c+2 d x)) \sqrt {1+\cot ^2(c)}}-\frac {4 A \cos ^4(c+d x) \csc (c) \sec ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) (a+a \sec (c+d x))^2 \left (A+C \sec ^2(c+d x)\right ) \left (\frac {\, _2F_1\left (-\frac {1}{2},-\frac {1}{4};\frac {3}{4};\cos ^2(d x+\arctan (\tan (c)))\right ) \sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1-\cos (d x+\arctan (\tan (c)))} \sqrt {1+\cos (d x+\arctan (\tan (c)))} \sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}} \sqrt {1+\tan ^2(c)}}-\frac {\frac {\sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1+\tan ^2(c)}}+\frac {2 \cos ^2(c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}{\cos ^2(c)+\sin ^2(c)}}{\sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}}\right )}{5 d (A+2 C+A \cos (2 c+2 d x))} \]

[In]

Integrate[Cos[c + d*x]^(5/2)*(a + a*Sec[c + d*x])^2*(A + C*Sec[c + d*x]^2),x]

[Out]

(Cos[c + d*x]^(9/2)*Sec[c/2 + (d*x)/2]^4*(a + a*Sec[c + d*x])^2*(A + C*Sec[c + d*x]^2)*(-1/10*((8*A - 5*C + 8*
A*Cos[2*c] + 5*C*Cos[2*c])*Csc[c]*Sec[c])/d + (2*A*Cos[d*x]*Sin[c])/(3*d) + (A*Cos[2*d*x]*Sin[2*c])/(10*d) + (
2*A*Cos[c]*Sin[d*x])/(3*d) + (C*Sec[c]*Sec[c + d*x]*Sin[d*x])/d + (A*Cos[2*c]*Sin[2*d*x])/(10*d)))/(A + 2*C +
A*Cos[2*c + 2*d*x]) - (2*A*Cos[c + d*x]^4*Csc[c]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]
]^2]*Sec[c/2 + (d*x)/2]^4*(a + a*Sec[c + d*x])^2*(A + C*Sec[c + d*x]^2)*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin
[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan
[Cot[c]]]])/(3*d*(A + 2*C + A*Cos[2*c + 2*d*x])*Sqrt[1 + Cot[c]^2]) - (2*C*Cos[c + d*x]^4*Csc[c]*Hypergeometri
cPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2 + (d*x)/2]^4*(a + a*Sec[c + d*x])^2*(A + C*Sec[c
+ d*x]^2)*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d
*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/(d*(A + 2*C + A*Cos[2*c + 2*d*x])*Sqrt[1 + Cot[c]^
2]) - (4*A*Cos[c + d*x]^4*Csc[c]*Sec[c/2 + (d*x)/2]^4*(a + a*Sec[c + d*x])^2*(A + C*Sec[c + d*x]^2)*((Hypergeo
metricPFQ[{-1/2, -1/4}, {3/4}, Cos[d*x + ArcTan[Tan[c]]]^2]*Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/(Sqrt[1 - Cos[d*
x + ArcTan[Tan[c]]]]*Sqrt[1 + Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]
^2]]*Sqrt[1 + Tan[c]^2]) - ((Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/Sqrt[1 + Tan[c]^2] + (2*Cos[c]^2*Cos[d*x + ArcT
an[Tan[c]]]*Sqrt[1 + Tan[c]^2])/(Cos[c]^2 + Sin[c]^2))/Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2
]]))/(5*d*(A + 2*C + A*Cos[2*c + 2*d*x]))

Maple [A] (verified)

Time = 45.80 (sec) , antiderivative size = 268, normalized size of antiderivative = 1.70

method result size
default \(\frac {4 a^{2} \left (12 A \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{6} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-32 A \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+13 A \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-5 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+12 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+15 C \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-15 C \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{15 \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(268\)

[In]

int(cos(d*x+c)^(5/2)*(a+a*sec(d*x+c))^2*(A+C*sec(d*x+c)^2),x,method=_RETURNVERBOSE)

[Out]

4/15*a^2*(12*A*sin(1/2*d*x+1/2*c)^6*cos(1/2*d*x+1/2*c)-32*A*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)+13*A*sin(1
/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)-5*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF
(cos(1/2*d*x+1/2*c),2^(1/2))+12*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(
1/2*d*x+1/2*c),2^(1/2))+15*C*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2-15*C*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(
1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2)))/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)
^(1/2)/d

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.11 (sec) , antiderivative size = 209, normalized size of antiderivative = 1.32 \[ \int \cos ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x))^2 \left (A+C \sec ^2(c+d x)\right ) \, dx=-\frac {2 \, {\left (5 i \, \sqrt {2} {\left (A + 3 \, C\right )} a^{2} \cos \left (d x + c\right ) {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - 5 i \, \sqrt {2} {\left (A + 3 \, C\right )} a^{2} \cos \left (d x + c\right ) {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 12 i \, \sqrt {2} A a^{2} \cos \left (d x + c\right ) {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 12 i \, \sqrt {2} A a^{2} \cos \left (d x + c\right ) {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) - {\left (3 \, A a^{2} \cos \left (d x + c\right )^{2} + 10 \, A a^{2} \cos \left (d x + c\right ) + 15 \, C a^{2}\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )\right )}}{15 \, d \cos \left (d x + c\right )} \]

[In]

integrate(cos(d*x+c)^(5/2)*(a+a*sec(d*x+c))^2*(A+C*sec(d*x+c)^2),x, algorithm="fricas")

[Out]

-2/15*(5*I*sqrt(2)*(A + 3*C)*a^2*cos(d*x + c)*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) - 5*I*
sqrt(2)*(A + 3*C)*a^2*cos(d*x + c)*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) - 12*I*sqrt(2)*A*
a^2*cos(d*x + c)*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) + 12*I*sqrt
(2)*A*a^2*cos(d*x + c)*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))) - (3*
A*a^2*cos(d*x + c)^2 + 10*A*a^2*cos(d*x + c) + 15*C*a^2)*sqrt(cos(d*x + c))*sin(d*x + c))/(d*cos(d*x + c))

Sympy [F(-1)]

Timed out. \[ \int \cos ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x))^2 \left (A+C \sec ^2(c+d x)\right ) \, dx=\text {Timed out} \]

[In]

integrate(cos(d*x+c)**(5/2)*(a+a*sec(d*x+c))**2*(A+C*sec(d*x+c)**2),x)

[Out]

Timed out

Maxima [F]

\[ \int \cos ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x))^2 \left (A+C \sec ^2(c+d x)\right ) \, dx=\int { {\left (C \sec \left (d x + c\right )^{2} + A\right )} {\left (a \sec \left (d x + c\right ) + a\right )}^{2} \cos \left (d x + c\right )^{\frac {5}{2}} \,d x } \]

[In]

integrate(cos(d*x+c)^(5/2)*(a+a*sec(d*x+c))^2*(A+C*sec(d*x+c)^2),x, algorithm="maxima")

[Out]

integrate((C*sec(d*x + c)^2 + A)*(a*sec(d*x + c) + a)^2*cos(d*x + c)^(5/2), x)

Giac [F]

\[ \int \cos ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x))^2 \left (A+C \sec ^2(c+d x)\right ) \, dx=\int { {\left (C \sec \left (d x + c\right )^{2} + A\right )} {\left (a \sec \left (d x + c\right ) + a\right )}^{2} \cos \left (d x + c\right )^{\frac {5}{2}} \,d x } \]

[In]

integrate(cos(d*x+c)^(5/2)*(a+a*sec(d*x+c))^2*(A+C*sec(d*x+c)^2),x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + A)*(a*sec(d*x + c) + a)^2*cos(d*x + c)^(5/2), x)

Mupad [B] (verification not implemented)

Time = 18.93 (sec) , antiderivative size = 188, normalized size of antiderivative = 1.19 \[ \int \cos ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x))^2 \left (A+C \sec ^2(c+d x)\right ) \, dx=\frac {2\,A\,a^2\,\left (\frac {2\,\sqrt {\cos \left (c+d\,x\right )}\,\sin \left (c+d\,x\right )}{3}+\frac {2\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{3}\right )}{d}+\frac {2\,A\,a^2\,\mathrm {E}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {2\,C\,a^2\,\mathrm {E}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {4\,C\,a^2\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}-\frac {2\,A\,a^2\,{\cos \left (c+d\,x\right )}^{7/2}\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{2},\frac {7}{4};\ \frac {11}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{7\,d\,\sqrt {{\sin \left (c+d\,x\right )}^2}}+\frac {2\,C\,a^2\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {1}{4},\frac {1}{2};\ \frac {3}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{d\,\sqrt {\cos \left (c+d\,x\right )}\,\sqrt {{\sin \left (c+d\,x\right )}^2}} \]

[In]

int(cos(c + d*x)^(5/2)*(A + C/cos(c + d*x)^2)*(a + a/cos(c + d*x))^2,x)

[Out]

(2*A*a^2*((2*cos(c + d*x)^(1/2)*sin(c + d*x))/3 + (2*ellipticF(c/2 + (d*x)/2, 2))/3))/d + (2*A*a^2*ellipticE(c
/2 + (d*x)/2, 2))/d + (2*C*a^2*ellipticE(c/2 + (d*x)/2, 2))/d + (4*C*a^2*ellipticF(c/2 + (d*x)/2, 2))/d - (2*A
*a^2*cos(c + d*x)^(7/2)*sin(c + d*x)*hypergeom([1/2, 7/4], 11/4, cos(c + d*x)^2))/(7*d*(sin(c + d*x)^2)^(1/2))
 + (2*C*a^2*sin(c + d*x)*hypergeom([-1/4, 1/2], 3/4, cos(c + d*x)^2))/(d*cos(c + d*x)^(1/2)*(sin(c + d*x)^2)^(
1/2))